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ABSTRACT 

Let /~ be any probability measure on R with f ]zld~u(z ) < co and let/~* 

denote the associated Hardy and Littlewood maximal p.m., the p.m. of 

the Hardy and Littlewood maximal function obtained from ~. Dubins and 

Gilat [6] showed that ~* is the least upper bound, in the usual stochastic 

order, of the collection of p.m.'s v on R for which there is a martingale 

(Xt)0_<t_<l having distributions of X1 and sup0_<t_<1 Xt given by/J and u 

respectively. In this paper, a type of 'dual representation' is given. Specif- 

ically, let v be any p.m. on R with lira supz~oo xv[x,co ) -- 0 and finite 

z0 = inf{z : v ( -co ,  z] 0}. Then there is a 'minimal p.m.' vA which is the 

greatest lower bound, in the usual convex order, of the collection of p.m.'s/~ 

on R for which there is a martingale (Xt)o<_t<l having distributions of X1 

and sup0_<t_<l Xt given by/~ and t, respectively. To demonstrate existence 

and to obtain identification of these minimal p.m.'s, we use, in particu- 

lar, a lattice structure on the set of p.m.'s with the convex order, and an 

equivalence between a convex order of p.m.'s and the stochastic order of 

their maximal p.m.'s. Consequences of these order results include sharp 
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expectation-based inequalities for martingales. These martingale inequal- 
ities form a new class of 'prophet inequalities' in the context of optimal 
stopping theory. 

I n t r o d u c t i o n  

Stochastic and convex orders on probability measures have been used extensively 

to express comparisons of random variables which describe some feature common 

to stochastic processes from a given class, such as waiting times for queueing sys- 

tems with given interarrival time and service time distributions; system lifetimes 

for reliability systems of the same type, with given component lifetimes; and 

rates of return on stocks or mutual funds from a given group (see e.g. [14, 9] 

and references therein). In probabilistic potential theory, convex orders on mea- 

sures are present in the theory of balayage or 'sweeping out '  of one measure to 

another, and lead to results such as Choquet's integral representation theorems, 

Skorokhod embedding theorems, and Strassen's martingalizability theorems (see 

e.g., [5, 10, 15] and references therein). In this paper, we compare terminal 

elements of martingales having the same maximum distribution, and find that 

martingale with minimal terminal dement in the convex order; thus, we exhibit 

a kind of 'constrained balayage' comparison. 

This is a type of 'dual investigation' to the use of the stochastic order on proba- 

bility measures to draw a precise connection between the maxima of martingales 

having the same terminal element. In both investigations, an essential role is 

played by the Hardy and Littlewood maximal p.m. /~*, the probability measure 

of the Hardy and Littlewood maximal function associated with a p.m. /~ for 

which J0 °° zd#(x) < oo (for a definition, see the remarks preceding Lemma 1.8). 

The comparison of maxima results are given in [1, 6, 8], and yield, in particular, 

that for any p.m. /~ on R with f Izld/~(z) < oo, 

(o.1) 
(i) there is a martingale (Z,)0<,<l for which Zl v = _ _ = g a n d  sup0_<t_<l Zt 7)/~,; 

(ii) tt .  = 1.u.b.~, {v:  there is a martingale (Xt)0<t<l satisfying 

X1 ~ = = / ~  a n d  sup0_<t_<l Xt 7) v}; 

(iii) {v : there is a martingale (Xt)o<t<l_ _ satisfying X 1 =V/~ and 



"Col. 77, 1992 STOCHASTIC AND CONVEX ORDERS 131 

supo<_,_<l {X, ~- v} = {v is a p.m. on R: /~  -<s v -<s k~*}. 

(Here -<, denotes the stochastic order and X ~ =/~ denotes that X has associated 

p.m. /~.) 

In the development leading to the results on comparison of terminal elements 

in this paper, the underlying analysis uses a lattice structure on probability 

measures in the convex order, and an equivalence between convex ordered p.m.'s 

and stochastic ordered maximal p.m.'s. These lattice and equivalence results are 

given in Section 1; they are connected to results in [7, 14, 16]. Just  as the Hardy 

and Littlewood maximal p.m. /J* is associated to any p.m. /~ satisfying a right- 

tail integrability assumption~ we find that there is an appropriate 'minimal p.m.' 

vzi associated to any p.m. v satisfying a right-tail growth condition. Specifically, 

we prove the following. 

THEOREM A: Let ~, be any p.m. on R satisfying limsupz_.ooxu[z, oo) = O, and 

denote 

g + ( v ) =  ~ i s a p . m .  on Rsatisfying z d ~ ( z ) < c ~ a n d v - ~ s ~ *  . 

0 

Then g+(v) is nonempty and there is a unique p.m. va in g+(v) which is the 

greatest lower bound of £+(~,) in the convex order. 

The proof of Theorem A is immediate from Proposition 2.1 and Theorem 2.4. 

The p.m. ~'A of Theorem A is called the minimal probability measure associated 

with p . m . v .  Examples of minimal p.m.'s are developed through Lemma 2.5 

and Proposition 2.7. Minimal p.m.'s are used in Theorem 3.1 to link the lattice 

structure on probability measures in the convex order to a lattice structure on 

maximal p.m.'s in the stochastic order. Some important properties of minimal 

p.m.'s are given in Proposition 4.1 and Theorem 4.5. 

The results which give a comparison of terminal variables are presented in 

Section 5, and yield in particular the following counterpart to the results of 

(0.1), which holds for any p.m. t, on R satisfying l imsup ,_ .~  zr,[z, oo) = 0 with 

finite z0 := inf{z : t , ( -oo,  z] > 0}, 

( 0 . 2 )  

(i) there is a martingale (Vc't)0<,<x for which 
= ~'a and SUPo<t_< 1 Wt v Y; 

(ii) t/a = g.l.b..c°{t': there is a martingale (Xt)o<t<l satisfying 
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X l  =v = p and sup0<t<l Xt ~ v}; and 

(iii) {p : there is a martingale (Xt)o<t<l satisfying X1 =~ # and suP0<_t< 1 Xt v__ 

v} = {p is a p.m. on R :  f xd#(x) = xo and va -<e # "% v}. 

(Here -<~ denotes the convex order.) The results of (0.2) follow immediately from 

Theorem 5.1 and Corollary 5.2. As a consequence of these comparison results, 

new sharp, expectation-based inequalities for martingales are given in Theorem 

5.3. In Remark 5.4, these martingale inequalities are interpreted as a new class 

of 'prophet inequalities' in optimal stopping theory. This 'prophet vs. gambler' 

interpretation lies at the heart of the p.m. comparison results in this paper, 

and was a constant source of motivation throughout the development of this 

investigation. 

1. Partial  Orders and Lattices on Sets  of  Probabi l i ty  Measures  

In this section, we give properties of three partial orders -~s, -~,  and - ~  defined 

respectively on spaces 

(1.1) P (R)  = the collection of probability measures on R = ( - c o ,  co), 
oo 

£+ = {# e ~ O ( R ) : / z d # ( x )  < co}, and 

0 

£ = {# e ~'(R) : f Ixld#(x) is finite }. 

We also discuss (P(X), ~.), (e+, ~o), and (e, ~k) as lattices. 
For each p.m. # on R, F = Fp denotes the distribution function of p and F -1 = 

F~ -1 denotes its left inverse (left-continuous inverse). F -1 is defined on (0,1) 

by f - l ( w )  = inf{z : F(z) > w}, and is extended to [0,1] by setting F - l ( 0 )  = 

F - l ( 0 + )  and F - ( 1 )  = F - l ( 1 - ) .  In this way, f -1 becomes a (extended) random 

variable on ([0, 1], B([0,1]), m) where B([0, 1]) denotes the Borel sets on [0,1] and 

m( dt ) = dt denotes Lebesgue measure. 

The order -<s is defined on T'(R) by #1 "% #2 iff #l[X, co) < #2[x, co) for all 

z E R. Then -% is a partial order on 7~(R) and, from [14], one obtains the 

following. 

LEMMA 1.1: Each of the following is equivalent to Pl "% #2 for #1 and #2 in 
~(x): 
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(i) f ¢d~1 < f ¢d#2 fox all nondecrea~ing functions ¢ for which both integrals 
exist; and 
(ii) F ; ' ( w )  < v £ i ( w )  for all ~ • [0,11. 

Observe that P (R)  is a lattice in the -<~ order, under the following operators 

V, and A,. If tJl and v2 are in 7~(R) with respective r.v.'s F1-1 and F2 -1 on 

([0, 1], B([0,1]), m), then v, V, v~ is the p.m. associated with r.v. FI- '  V F2-' , and 

ul As t~2 is the p.m. associated with r.v. F1-1 A F2 -1. 

Next, we define the order -4c on the set of p.m.'s £+ of (1.1) by Pl -<e P2 iff 

ftoo/21( x' oo)dx <_ f t  #2(x, co)dz for all t • R. Then -~e is a partial order on £+ 

[14], and from [141 one has the following. 

LEMMA 1.2: Each of the following is equivalent to fil "<¢ ]~2 for p.m. 's pl and 

g 2 / n £ +  : 

(i) f (~  - ~)+d~,(~) < f ( ~  - t)+d,~(~) for all t • R; 
(ii) f ¢dpl <_ f ¢d#2 for all nondecreasing convex functions ~ for wMch the 
integrals exist. 

We show that (E+,-%) is a lattice by finding an appropriate isomorphism 

between E+ and the space B+ of functions on R, defined as the collection of 

functions ¢ on R satisfying 

(1.2) (i) ¢ is convex and nondecreasing, 

(ii) l im(¢(t) - t) = 0, and 
*Too 

(iii) lim (¢(t  + h) - ¢(t))  = 0 for all h e R. 
t~-oo 

The usual pointwise order on functions is taken to be the partial order on B+, 

denoted -<. We first identify the lattice structure on (B+,-<) and then carry this 

structure over to (E+,-%). To do this, first recall from ([131: page 37) that the 

convex  hull o f  func t ions  {f~: i E I} on R, denoted conv({fi : i q I}),  is the 

convex hull of the pointwise infimum of {fi : i E I}. It is the greatest convex 

function f on R such that f(z) < fi(z) for every z E R and every i E I. 

LEMMA 1.3: The space (B+, -<) is a lattice under operations V and A, de6ned 

for ¢1 and ¢5 in B+ by 

(1.3) (¢1 v Cz)(t) = ¢,(t)  v Cz(t) and (¢1 ^ Cz)(t) = (conv({¢x,¢2}))(t).  
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Proof." Let ¢1 and ¢2 be in B+ and define ¢1 V ¢2 and ¢1 A ¢2 as in (1.3). It is 

straightforward to show that ¢1 V ¢2 E B+, that ¢i "< ¢1 V ¢2 for i = 1,2; and 

that i f ¢  E B+ with ¢i -< ¢ for i = 1,2, then ¢1 V¢2 -< ¢. 

We show that ¢1 A ¢2 e B+. First, obtain that t _< ¢i(t) for all t E R, for 

i = 1,2, from (1.2)(i) and (ii); and then use this to obtain that ¢1 A ¢2 is real- 

valued and that limtToo((¢l h ¢2) ( t ) -  t)0. By definition, ¢1 h ¢2 is convex. Also, 

¢1 h ¢2 is nondecreasing; if this were not true, then one could find x < y with 

¢1(z) h ¢2(x) > ¢1(Y) h ¢2(Y), which is impossible since ¢1 and ¢2 are both 

nondecreasing (e.g., use ([13]: page 37)). If we let O+u denote the right-hand 

derivative of function u, we have 9+(¢1 A ¢2) _> 0, and D+(¢1 A ¢2)(0 ~ as 

t l - ~ .  To show ¢1 A ¢2 satisfies (1.2)(iii), it suffices to show 

lim D + ( ¢ ,  A ¢2)(t) = 0. 
0.-oo 

But we have for each t E R, there is some ~ _< t such that 

D+(¢1 A ¢2)(0 -< D+(¢l)(t-) V D+(¢2)(t-) 

and so the result follows since limt,-oo D+(¢I)(t) V D+(¢2)(t) = 0. This shows 

¢1 A ¢2 E B+. From the definition of ¢1 A ¢2, it is immediate that ¢1 A ¢2 -4 ¢i 

for i = 1, 2; and that if ¢ E B+ with ¢ --< ¢i for i = 1, 2, then ¢ -< ¢1 A ¢2. | 

Now, define the mapping F from £+ into B+ by 

(r(~))(t) = ¢ , ( t )  : = / ( x  V t)d~,Cz), 

One can use the representations 

o o  

= 

t 

forv e e+. 

OO 

= / ( 1  - F(z))dz 

to see that ¢~, is an element of B+. Through the mapping F, the lattice structure 

of (E+,-<c) becomes apparent. 

PROPOSITION 1.4: The mapping r is an order-preserving isomorphism fi'om 

(~+, "<c) to (B+,-<). The space (~+,-%) is a lattice under the operations Vc 

and A,, defined for Px and P2 in C+ by 

(1.4) V, v ,  = r - l ( ¢ . ,  v and .1  Ao = r - ' ( ¢ . ,  A 
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Proof: First, observe from the definitions that for pl,p2 ~ ~+,/.~1 "~c /'/'2 if and 

only if ~bm(t ) < ~,2(t) for all t e R. The one-to-one property of F follows from 

the anti-symmetry of the partial order -%. The onto property of 1 ~ is shown 

by taking any function satisfying (1.2); defining F(z) := D+~(z),  the right- 

hand derivative of ~b at z; and showing that F is a distribution function with 

f o  zdF(z) < c¢ from the properties (1.2). Thus, the inverse mapping I '-x from 

B+ into £+ is identified by = for e+ .  Now, 

use Lemma 1.3 to show that (E+, "~c) is a lattice, and that the mapping F is 

order-preserving. | 

Third, define the order ~k on the set of p.m.'s £ of (1.1) by Pl -~k P2 if 

f ~dpl < f ~dp2 for all convex functions ~ for which both integrals exist. Now, 

-~k is a partial order on ~, but the set 8 is not a lattice in the -~  order. To see 

this first observe that if Pl, P2 E ~ with Pl -% #2, then f xdpl = f zdp2. Thus, 

for any two elements va, v2 E C with f xdul # f zdu2, there is no element p E 

with p "~k ul and p "~k u2. However, this suggests that we consider, for each 

r E R, the set 

= {~, ~ ~'(X) : / z d p ( z )  = F). 

We will show that (Er, ~k) is a lattice by using the following. 

LEMMA 1.5: 

(i) (£, ~c) is a lattice under the operations Vc and Ac of (1.4). 

(ii) Let Itl and #2 be in £. Then pl "<k P2 if and only if pl "~c P2 and 

f zdp, -- f xdp2. 

Proof: To see (i), replace the set B+ by the set B of functions ~ on R satisfying 

(1.2)(i), (ii) and (iii)' ~ is bounded from below. Then use re=oning analogous 

to that leading to Proposition 1.4. In particular, one shows that (B,-~) is a 

lattice under the operations of (1.3); and one uses the observation that for p E 

E, limq-oo ~b~(t) = f xd#(z), to show that the mapping F is an order-preserving 

isomorphism from (£, -%) to (B, -~), and that the space (£, -%) is a lattice under 

the operations of (1.4). For conclusion (ii), see ([14]: page 9). | 

The result that the mapping F is a one-to-one mapping from • onto B was 

given by Gilat [7]. 
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PROPOSITION 1.6: Fix any r • R. The space (~r, "%) is a lattice under oper- 

ations Vk and Ak defined to be the same as those under the -~c order, given in 

(1.4). 

Proof." Let 121,122 • gr. Now, 121 Ac122 and 121Vc122 are in g. We show 

f xd(121 Ac 122) = r  = f xd(121 Vc 122 ). 

We have fxd(121 Ac 122) = r since ~ -~c 121 Ae 122 "~e 12i f o r  i ~-- 1,2 (where sr 

denotes point mass at r); and we have f xd(121 Vc 122) = r since 

fzd(121 12z) = lim t m v , ~ ( t )  = lim t i n ( t )  V ¢,~(t)  = r. Vc 
tl-oo t~-oo 

Thus 121 Ac 122 and 121 Vc 122 are in g~, a n d / q  A~ 122 -<k 12i "~k 121 Vc 122 for i = 1, 2 

from Lemma 1.5(ii). The remainder of the proof is straightforward. For example, 

if12 • ~ and 12 "<k 12i for i = 1,2, then 12 -<~ 12i for i = 1,2 and so 12 -<c 121Ac 122, 

thus also 12 ~k 121 Ac 122. | 

For p.m.'s in S, there is a known connection between the orders -~c and -% 

and processes of submartingales and martingales. From Theorems 8 and 9 of 

[15], one has the following. 

LEMMA 1.7: Let #1 and #2 be p.m.'s in g. 

(a) Each of the following is equivalent to ]21 "~c 122: 

(i) (121,122) is a submartingale pair, that is, there is a probability space 

(~ ,~ ,P ) ,  and r.v.'s X1 and X2 on fl with associated p.m.'s 121 and 122 

respectively, for which X1 ~_ E(X~]X1) a.e. [P]; 

(ii) there is a probability kernel K :  R x B(R) -+ [0,1] with z <_ f yK(x,  dy) 

for all z • R and f K(z,A)121(dz) = 122(A) for all A • B(R). 

(b) Each of the following is equivalent to 121 -~k 122: 

(i) (121,122) is a martingale pair, i.e., there is a probabi/ity space (n,  J=, P) ,  
and r.v.'s X1 and )(2 on f~ with associated p.m.'s 121 and 122 respectively, 

for which X1 = E(X2[X1) a.e. [P]; 

(ii) there is a probabiIity kerneI K :  R x B(R) --* [0,1] with f yg (x ,  dy) = z 

for all x • R and f Z(x,A)121(dx) = 122(A) for a/1 A e B(R). 

In this process context, Lemma 1.5 and Proposition 1.6 have the following 

interpretations. Let 121 and 122 be in ~. Then 121 Ac 122 is the unique p.m. on R 
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satisfying (i) (#1 Ac/22,/21) and (#1 A~ #2,#2) are both submartingale pairs; and 

(ii) if # is any element of £ for which both (#, #1 ) and (/2,/22) are submartingale 

pairs, then (/2,/21/Xc/22) is also a submartingale pair. Next, let/21 and/22 be in gr, 

for fixed r E R. Then/21 hk/22 is the unique p.m. on R satisfying (i) (/21 Ak/~2,/21) 

and (/21 hk/22,/22) are both martingale pairs; and (ii) if/2 is any element of Er for 

which both (/2,/21) and (/2,/22) are martingale pairs, then (/2,/21 ^k/22) is also a 

martingale pair. Analogous interpretations can be given to/21 Vc/22 and/21 Vk/22. 

In this paper, we are mainly concerned with the -% and -~c orders. There 

are some useful relationships between these orders. It is immediate that for 

/21,/22 E £+, if ~1 "~s 122, then/21 -~ #2. We develop a more precise connection 

between the orders -~s and -~c. For p.m. /2 E E+, let H -1 = H~ "1 denote the 

Hardy and Littlewood maximal function associated with/2, defined on [0,1] by 

1 

H-l(w) = (1 - f 
111 

(with H - l ( 1 )  = F~-I(1)), having associated distribution function H = Hi, (with 

left inverse H -1) and associated p.m. #*, the Hardy and Littlewood maximal 

p.m. associated with/2. The following lemma is basic to our analysis; it equates 

the -go order on p.m.'s and the "<s order on their maximal p.m.'s. 

LEMMA 1.8: For p.m.'s #1 and #2 in £+,#1 -~c #2 if  and only if  #~ -~, #5. 

Proof." Let #1 and #2 be p.m.'s in £+ having distribution functions F1 and F2 

respectively. Define the crossover points associated with F1 and F2 as follows: 

(c, w) is a crossover point if for i # j E 1,2, 

Fi(c-) < Fj(c-) <_ Fj(c) _< Fi(c) and w = Fj(c), 

or 

F/- l (w) < F ; l ( w )  < F ; l ( w ~  -) _< F/-l(w~ -) and c = FT' (w  ). 
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We have 

i~ ...<, i~; ¢~ H;l (w)  < H; l (w)  for all w e [0,1] 
1 

F~~(u))du > 0 for all crossover points (c,w) 

lip 

OO 

/ (F l (u )  - F2(z))dz > 0 for all crossover points (c,w) 

c 

OO CO 

¢:~ f ( 1  - Fl(z))dz < f(x - F2(z))dz for all crossover points (c,w) 
c ¢ 

where we have used that for each crossover point (c, w), 

1 o o  

• P c 

= area between F1 and F2 to the right of c 

= area between F1-1 and F ~  1 to the right of w. | 

The following is now immediate: 

(1.5) 
for ~I and/~2 in E with the same mean, 

/~1 -<c ~2 ¢~ ~i -~k ~2 ¢~ ~ ~ / ~ .  

Under the common mean assumption, van der Vecht ([16]: page 69) gave a result 

(attributed to D. Gilat) equivalent to the second equivalence in (1.5). 

2. Ex i s t ence  and  E x a m p l e s  of  Min ima l  P r o b a b i l i t y  M e a s u r e s  

Let z~ be any p.m. on R, and recall from (1.1) that ~+ is the set of p.m.'s p on 

R satisfying f0 °° xdp < co. Let £+(v) be the subset of £+ given by 

(2.1) e+(~) = { ,  e E+: ~ -~, ,*} .  

Theorem A of the Introduction states, in part, that if E+(v) is nonempty, then it 

contains its greatest lower bound in the -~¢ order, which is called va. Verification 
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of Theorem A follows easily from Proposition 2.1 and Theorem 2.4. We call this 

p.m. ua the minimal probability measure associated with v. Examples of 

minimal p.m.'s are given after Theorem 2.4. 

The set of p.m.'s v which have a minimal p.m. vA is the set of p.m.'s v for 

which E+(v) is nonempty; this set is denoted 7 )*, that is, 

O 0  

(2.2) 7)* = {v 6 7)(R) : v -'<s/~* for some p.m. ft with / x d / ~  < oo}. 
# t  

0 

We characterize the set 7)* in the following. 

PROPOSITION 2.1: 7)* = {v E 7)(R) :limsup,_~oozv[z, oo) = 0}. 

Proof: We first prove the containment 'C'.  Let v 6 7)*. We suppose v[z, oo) > 0 

for all z 6 R; otherwise the containment is immediate. Let /J q £+ such that 

v -<, #*. Now, H = H ,  = FI,. is strictly increasing and continuous, and 

1 

z/~*[z, co) = x(l - H(x)) = H-*(H(x))(I - H(x)) = / F;1(Oa . 
lq(,) 

From the assumptions, it follows directly that 

1 

0 < limsupxv[x, oo) < limsupz/~*[z, oo) = limsup / F~*(t)dt = 0 
=T~ " t ~  ztoo J 

H(z) 

and the containment is proved. 

Next, we prove the containment 'D'. Let v be any p.m. on R satisfying 

(2.3) lim sup zv[z, oo) = O. 
zl'oo 

We suppose that v is a discrete p.m. on R having atoms (y,),=0,] .... such that 

0 < y0 < ... < y, < y,+1 < "'" T co and (y,,) has no accumulation point. (If 

v is any p.m. satisfying (2.3), then one can always construct a discrete p.m. P 

such that lira supxto o x~[x, oo) = 0, the atoms of ~ have the desired properties, 

and v -<s v; and then one may reduce the argument to working with ~.) We 

construct a p.m. ~t on R satisfying f~o yd/.t < oo and v -%/.t*. 

Define the function A(z) = h(z; v) on (y.)  by 

= oo) - oo) - oo)). 
z>z 
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One uses the properties of v in a straightforward way to show that for each atom 

x in (yn), 

(i) - c o  < h(z)  < x, 

(ii) (zv[z, co) - xv[x, co))/(~,[z, co) - L,[x, co)) --* x as z ~ x and as z T co, 

(iii) A(x) = (y~,[y, co) - x~,[x, co))/(v[y, co) - ~,[x, oo)) for some y • (yn). 

Thus, there is a subsequence (xn) of (y,,) with x0 < . . .  < xn < xn+l < . . .  

constructed recursively as follows: let x0 = y0, and if x l , . . . , x j - 1  have been 

found, then define x i as the largest number y in (yn) for which 

h ( x j _  1 ) = (yv[y, oo)  i X j i l  v [ X j _ l  , c o ) ) / ( ~ [ y ,  co) _ ~ [ , s _ ~ ,  c o ) ) .  

Let an, b,,  cn, for n = 0 ,1 , . . . ,  be parameters defined by 

(2.4) an ----v[xn,co); bn = V[Xn,Xn+,) = an -- an+l; and 

cn = A ( x n )  = ( X n + l a n + l  - x n a n ) / ( a n + l  - an); 

oo b and define p.m. # by p = En= 0 ,~c. .  First observe that p E £+, since 

S YdP = ~n°°=obnc, = ~ = o ( x n a ,  -Xn+lan..[.1) 

= xo - l imanzn = zo - l imxnu[Xn,~)  = zo 
n 

from (2.3) and (2.4). 

Next, we show that ~, "~s #* by verifying that v[x, co) _< #*[x, co)for all x E R. 

One obtains through direct calculation (e.g., with use of Fg, F~-I, and H~")  that  

for Xj-- 1 • X < Xj ,  

(2.5) = ~ ' [ x s - , ,  ~ ) ( x j _ l  - ~ s - , ) / ( *  - ~s -~ ) -  

Thus, for z j -1  < x < xi,  v[x, co) _< #*[x, co) is equivalent to 

(2.6) ~[x, co) < ~[xj-1,  co ) ( .~ - I  - c j_~) / (x  - c i - : ) .  

But, by algebraic manipulation one obtains that (2.6) is equivalent to 

~j_, < (~ [~ ,  co) - .~_,  ~[.~_,, co))/(~[. ,  oo) - ~( .~_, ,  co)), 

and this is immediate from the definition of cj-1 = A(x/-1).  | 
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Examples of probability measures in P* are the following: 

(i) E+ C P* (e.g., since if v e C+, then v E E+(v)), for example, p.m.'s with 

bounded support; Gaussian, exponential, and gamma p.m.'s, etc. 

(ii) P~ C ~v* (e.g., since if v = #* for some # • ~+, then # • ~+(v)), where 

(2.7) { i } 7~ := v E P (R)  : v =/~* for some p.m./~ with yd/~ < oo , 

0 

the set of maximal p.m.'s. 

Note that there are p.m.'s in S+ \ P~ (e.g., any nondegenerate p.m. t, concen- 

trated on finitely many atoms); and that there are p.m.'s in P~ \~+ (in particular, 

if f o  zd~t < oo but  f o  z (In z)+dl~ = oo, then it may follow that f~o zdl~* = oo; 

see, e.g., [11]). Examples of probability measures not in P* are those in the do- 

main of attraction (for maxima) of the second extremal type distribution function 

q%(z) = e x p { - x - ~ } ,  z > 0, for 0 < a < 1, for example, the Pareto distribution 

0 < a < 1 and the Cauchy distribution; use the representation for distribution 

functions in this class given, e.g., in ([12]: Corollary 1.12). 

We develop some lemmas that are used in the proof of Theorem 2.4. In the 

following, we use N = {1, 2 , . . .}  and use p,, =~ p to denote weak convergence of 

p.m.'s {p,,} to p.m. p (convergence in distribution of {Fpn } to Fp). We use the 

following equivalence (see, e.g., page 5 of [12]) for p.m.'s {p,,} and p: 

(2.s) 

p,, =~ p if and only if l imF~l ( t )  = FT' (*  ) 

for each continuity point t of F~ -1 in (0,1). 

LEMMA 2.2: Let v E P(R)  and/~o E E+ with v -%/~ .  Then the set of p.m.'s 

{p E P~ : v -% p -% #~} is sequential]y compact in the topo]ogy of weak 

convergence. 

Proof." Let {/~n}n~N be any sequence of p.m.'s in S+ satisfying v - % / ~  -~s/~ 

for all n E N. For each n = 0,1, 2, . . . ,  associate wi th p.m. /~, the distr ibution 

function F,~ and left-inverse function F~ -1, and maximal p.m./~*~ together with its 

distribution function H,, and left-inverse function H~ "1. There is a subsequence 

{i} of N with F~(u) converging in i to some value, say F(u), for all u in some 

dense subset D of R. Then F : D ~ [0, 1] is nondecreasing and can uniquely be 

extended as a right-continuous function to  F : R ~ [0, 1]. 
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We show F is a distribution function. First, we show that limttoo F(t) = 1. 
Suppose this is not true; then there is some tl E (0, 1) at which F/-1Ctl) converges 

to co. Since p~ -~o p~ for all n E N, we obtain the contradiction 

1 1 

oo=li ,ll-tl)-l f F:ll,,)du<_¢l-tl)-' f FolC,,)d,, 
t l  t l  

= H o l ( t l )  < ~ .  

Next, we show that limtt-oo F(t) = 0. Suppose this is not true; then there 

is some sl E (0,1) at which F~-l(sl) converges to -oo .  But then again using 

p,~ "~s p~ for all n e N, we obtain for each so E C 0, Sl ), 

1 $1 

/ F.I(u)du < / F~ICu)du-k CI -- sl)HoICSl), 
$0 $0 

and therefore 

(2.9) l i m i n f H . l ( s o )  = - ~  for each so e (O, sl). 

But we know v ~ ,  p* for all n E N; and so for all z E R, v(-cx~, x] > p*( -oo ,  z] = 

Hi(x), and H~lCv(-cx~,x]) >_ x. But this, together with (2.9), forces vC-oo, z ] ~ 
sl for all x E R, a contradiction to u being a p.m. on R. Thus F is a distribution 

function. 

Associated with the distribution function F are the p.m. p and left-inverse 

function F -1 . We have p~ =~ p. We define 

1 

H - l ( t )  = (1 - t) -1 / F-l(u)du 

t 

f o r t  e C0,1) 

and will show that 

(2.10) Hf  -1 (t) --, H - l ( t )  as n T oo, for each t e (0,1).  

From this it easily follows that p E £+; the maximal p.m. p* has distribution 

function H and left-inverse function H-1;v  -~ p* -~s P~; and p~ =~ p* from 
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(2.8). For the proof of (2.10), we first obtain that 

(2.11) (i) l i m / F [ q ( u ) d u = / F - l ( u ) d u  for a l l 0 <  t0 < t l  < 1; 

to to 

(ii)lim li inf 1 1 ,,ta m F~- (u)du = 0 = 1}~ m. up (u)du ; 
\ tx \ tx / 

1 

(iii) txTllim f F-l(u)du = O. 
t l  

To verify that (2.11)(i) holds, observe that {F/"' (u)} is uniformly bounded over 

i and u in [t0,tl], use that F/-'a(u) --* F-l(u) for each continuity point u of F -1 

in (0,1), and apply the bounded convergence theorem. To verify that (2.11)(ii) 

holds, use that u -% p,~ -<~/z~ for all n E N to obtain for 0 < t < t < 1, 

1 

(1 -t)F~"(0 _< (1 -t)F~-'(t) < li~nf / Fg'(u)d~ 
t 

1 1 

< < / : , ( . , , ,  
t t 

and let t * 1 (observe f :  F0-1(u)du --* 0 since J o  xdp0(x) < co). To see that 

(2.11)(iii) holds, observe that if (2.11)(iii) fails, it must be the case that 

1 

lira ] F-l(u)du = +~. 
hT1 J 

t l  

But then for any ~ > O, for each to close to 1, there is tl in (t0,1) for which 

h. tx 1 

to to to 

where ~e have used (2.11)(0. But this contradicts (2.n)(ii). Now, use (2.11)0) 
to obtain for all to < ta < 1 

1 1 1 1 

l iminf f F~-l(u)du - / F-l(u)du = liminf f F[-l(u)du - f F-l(u)du. 
to to tx tx 
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Using this and (2.11)(ii), (iii) and letting t, T 1, we obtain 
1 1 

lim/inf i Fi-l(u)du- f F-l(u)du 
to to 

( J  J ) = lim liminf F~-l(u)du - F - l ( u ) d u  
qT1 

tl tt 

= 0 .  

By an entirely analogous argument, one uses (2.11) to show 
1 1 

lim~up f FFa(u)du= f F-a(u)du. 
to to 

The convergence in (2.10) now follows, l 

LEMMA 2.3: Let {itn}neN be any sequence o/p.m. 's  in E+ satisfying v -% It* -~, 

It~ for a/1 n E N, for some u E 79(R) and go E E+. Then 

(a) /f {itS} is decreasing in the -~  order, then there is a unique p.m. # e E+ 

with g,, =~ g* and i ~* A * N} ; and • = , { / ~ , ,  : n ~ 

(b) if {it,~} is increasing in the -<s order, then there is a unique p.m. # E £+ 

with It* =~ It* and/~* = V,{It~, : n E N}. 

Proof: We prove part (a); the proof of part (b) is analogous. Let {#n},,eN be 

p.m.'s satisfying the hypotheses under part (a), with associated maximal p.m.'s 

{it,~} having left-inverse functions {H~ ~ }. Then {H~ ~ } are pointwise decreasing 

in n. From Lemma 2.2, there is a p.m. It E ~+ with associated maximal p.m. 

#* having left-inverse function H -1 for which It~ =~ It* and H ~ ( t )  ~ H-X(t)  for 

e a c h t E ( 0 , 1 )  a s n ~ c ¢ .  S inceH -x < H f f  l, we have It* ~ ,  * for a l l n E N .  - -  I t  l 't } 

Also, if p e 79(R) with p -~s It~ for all n e N, then F~ -1 _< H~ -1 for all n E N, 

and one concludes from the convergence that F~ -1 < H -1 and p --4~ It*. Thus 

It* = ^ , { I t*  : n  ~ R} .  I 

Under either the assumptions of part (a) or of part (b) of Lemma 2.2, it follows 

easily (using ideas in the proof of Lemma 2.2 for (2.12) (ii)) that the p.m. tt in 

the conclusion satisfies 

(2.12) (i) u -~/z* ~ / z ~ ,  and 

(ii) if p.m. A satisfies /zn -~ A for all n E R, then /J -% A. 
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THEOREM 2.4: Let u be any p.m. on R satisfyingu -<, #~ for some p.m. i~o with 

f o  xd#o < oo. Then there is a unique p.m. va on R satisfying(i) f o  zdva(x) < 

oo;(ii) u "<s (uA)*; and (iii) i f f i  is any p.m. on R with foXdP(x) < oo and 

v "<s fi*, then (vzx)* -<s fz*. 

Proof." Let D denote a countable dense subset of R. From the usual diagonal- 

ization procedure, there is a sequence {#n :n  = 1,2, . . .}  in E+(v) satisfying, for 

a l lx  E D, 

(2.13) supv ; , ( -oo ,  x] = sup / ( - o o ,  z]. 
hEN pEE+(v) 

Furthermore, from the lattice structure of (~e+,.<c), we may assume that {/zn} 

is decreasing in the -% order and ~ul --% /z0, so that {/z*} is decreasing in the 

-<o order and #~ -<8 /~. The hypotheses of Lemma 2.3(a) are satisfied for this 

sequence {#n), and we obtain unique p.m. # E ~¢+ with #* = As{#~ : n E N}. 

Define va := # and observe that conclusions (i) and (ii) are immediate from 

Lemma 2.3 and (2.12). To verify conclusion (iii), let # be any p.m. on tt with 

f o  xdp < oo and v --<, #*. Use that va = # E g+(v) (by conclusions (i) and 

(ii)) and (2.13) to obtain that (va)*( -oo ,  x] _> #*( -oo ,  x] for all x E D and thus 

(VA)* ~ fi*. Uniqueness of the p.m. uzx in the conclusion is clear. 1 

The proof of Theorem A is immediate from Theorem 2.4. As a consequence of 

Theorem A and the equivalences of Section 1 we have that for each p.m. u E 7 9., 

the minimal p.m. ua is in E+(v) and satisfies 

(2.14/Ill [ = rain [ 
d 

for every nondecreasing convex function for which the integrals exist, and 

(ii) f ua[z, oo)dz = vce+(~)min J [ " [ x '  o~)dx for all t E R 
l t 

and the associated maximal p.m. (va)* and its left-inverse function H~x I satisfy 

(2.15) (i) (vA)*(-oo, x] = max ~*(-oo,  x] for all x E R, and 
~Ee+(v) 

(ii) HT~l(t) = inf H71(t) for all t E [0,1]. 
t, Etr+(v) 

We now identify minimal p.m.'s uzx in the special cases of maximal p.m.'s v 

(Lemma 2.5) and simple discrete p.m.'s u (Proposition 2.8), and give specific 

examples. 
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LEMMA 2.5: (a) If [~ • ~+, then (#*)a = #. 
(b) If ~ • ~ ,  then the lert-in.erse fu.ction F ;  2 for p.m. ~a is given through 

the equation 

(2.16) Y~-~(w) = F~-'(w) - (1 - W) d~ F~-i(w ). 

Proof." For part (a), use the defining properties of (#*)a as given in Theorem 

2.4 to obtain #* -% ((#*)a)* and ((#*)a)* ~s #*; and then use Lemma 1.8. Part 

(a) gives that if y = #* for # • E+, then va = #; thus ~ and va are related by 

1 

= (1  - ~ ) - '  / FT'(~) F;-2 (,,),t,, 
W 

and (2.16) follows by differentiation. If necessary, one takes a left-continuous 

modification of the expression identified in (2.16). | 

Part (b) of Lemma 2.5 states that, for any maximal p.m. v, the left-inverse 

function F~-~ for p.m. va is a solution G of 

1 

= (1 - w) -~ / a(u)du, 
.Q 

r~ - I  (w) 

W 

and is unique a.e. among nondecreasing, left-continuous solutions G. For the 

purpose of constructing examples, the following characterization of the set T~ of 

maximal p.m.'s is useful. 

LEMMA 2.6: For any p.m. y on R, y E 7)~ if and only if the following holds: 

(2.17) (i) limsup(1 - w)F~'(w) = 0, and 
wT1 

(ii) (1 - w)F;l(w) is a concave function. 

Proof: If v • P~, so that v = #* for some 1~ • C+, then (2.17)0) is immediate 

and (2.17)(ii) follows from an argument similar to that in ([13]: pages 230-231), 

since 
1 

(1 - w)F~-l(w) = / F;l(t)dt. 

W 

On the other hand, if v satisfies (2.17)0) and (ii), let 

a(w) = - ( 1  - W)F~-I(w) for w e [0, 1]. 
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Since a(w) is a convex function, its left derivative a- (w)  is a finite, nonde- 

creasing, lef t-continuous funct ion on (0,1); extend a- (w)  to [0,1] by  set t ing 

a - ( 0 )  = a - ( 0 + )  and  a - ( l )  = a - ( l - ) .  Consider a- (w)  as a r a n d o m  variable on 

( [0 ,1 ] ,B ,m) ,  and  associate with a- (w)  its p .m.  # and d.f. F , .  T h e n  F~ -1 = a -  

and for 0 < w < z < 1, 

f F21( t )e t  = a - ( t ) e t  = a(z) - ~(~+) -- - ( 1  - z )F21(z)  (1 - ~ )F2~(w+) .  + 

Now, let z T 1 and use (2.17)0) to obta in  

1 

F~-l(w+) = (I - w) -1 / Ff l ( t )d t ,  

wI  

and thus  v = #% with  # 6 $+. | 

Examples 2.7: For each of the following p .m. ' s  u, condit ions (2.17)(i) and  (ii) 

hold, and  so u • T'~ and  uA can be  identified f rom (2.16). 

(i) If  u is Exponent ia l  d is t r ibuted with p a r a m e t e r  one, then  vA has d.f. 

F~,~(x) = 1 -  e - l e  -~ i f x  >__ - 1 ,  and  = 0 otherwise.  

(ii) If  u is Pare to  d is t r ibuted with pa rame te r  a > 1, so tha t  F~(x) = 1 - x -~ 

if x > 1, and = 0 otherwise,  then va  has d.f. F ~ ( x )  = 1 - (1 - a-1)~x -~ 

i f x  > 1 - a -1,  and = 0 otherwise.  

(iii) If  v has d.f. F~(x) = 1 - (1 - x) ~ if 0 < x < 1, for a > 0, then  u~ has d.f. 

r ~ , ( x )  = 1 - (1 + ~ - 1 ) - ° ( 1  - x )~  if _ ~ - 1  < x < 1. . 

In each of these examples ,  (ua)* = u. It is t rue  tha t  i f u  • 7 ~*, then  v -<s (va)*;  

but  in general  v ~ (va)* .  Some examples  in which u • P* and  u # (vA)* are 

given in Example  2.9, and  are a consequence of the  following proposi t ion.  Let u 

be  any p.m. on R. Define the set 

Supp+(v) := {x: v[y, oo) < vix, oo)for all y > x}, 

and define the function A(x; v) for x • Supp+(v) by 

(2 .1s )  A(~)  = h ( x ;  ~) = ~ { ( y ~ [ y ,  oo)  - x~[x ,  o o ) ) / ( ~ [ y ,  oo)  - ~(x, oo)). 

For a par t icular  p.m. v, this funct ion A(. ; v) was used in the proof  of Propos i t ion  

2.1. 
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PROPOSITION 2.8: Let v be any discrete p.m. on R having finitely many atoms 

Yo < Yl < . . .  < Y~. Then a r.v. X which has minimal p.m. vA is given by 

A(x0) with probability v( -oo ,  Zl), 

(2.19) X =  A(x/_l)  withprobabil i tyz/[xj_~,xj) ,  f o r j = 2 , . . . , k ,  

n(x~) = y .  with probabi~ty ~[~k, oo) = ~{y.} ,  

where numbers Xo < zl  < . . .  < xk are chosen from (Yi)i=o,...,, by the following: 

(2.20) Let Xo = Yo- 

Having chosen x 0 , . . . ,  xj,  the next number Zj+l 

is the maximal number Yi > xj for which 

A(x/) = (yiv[yi, oo) - zjv[xj ,  oo))/(z/[yi, oo) - v[zj, oo)). 

The procedure stops at xk = yn. 

( l i p  = ey, then va = ~ also.) 

Proof: The degenerate case v = ey immediately gives vA = ev, so we suppose 

that  n >_ 1. Let A denote the p.m. associated with r.v. X of (2.19). To obtain 

that A is the minimal p.m. ~a, we show 

(2.21) (i) v -<s A*, and 

(ii) if # is any p.m. on R with zdp < co 

then ~* -% p*, 

and v -% #*, 

and then use Theorem 2.4. For this purpose, we denote ci := A(z j -1 )  for j = 

1 , . . . ,  k +  1, and note that from direct calculation (working through F~, F~ "I, and 

H~ -1), one obtains that maximal p.m. A* is given by 

(2.22) 
1 i fx  < zo = Yo, 

)¢[x, o o ) =  v [ x j , c o ) ( x j - c j ) / ( x - c j )  i f x j - l _ < x < x j ,  f o r j = l , . . . , k ,  

v[z t ,oo)  = v{y,} i f z  = y ,  = zk, and 

0 if y,, < z. 

We show that v -% A*. First, observe from (2.22) that v[z, oo) = A'[z, co) for 

z _< Y0 and for y,, _< z. Now, for z j -1  <_ x <_ z j ,  observe that (from (2.18)) 

ci = A(xi -1)  = ( x ~ [ . i ,  ~o) - ~j-1 ~[ . j -x ,  oo) ) / (~[ . i ,  oo) - ~[xi_, ,  oo)) 

(2.23) _< (zv[z,  oo) - Xj_ 1V[Xj_I, O0))/(I/[X, 00) - -  1/[2~j_1,00)). 



Vol. 77, 1992 STOCHASTIC AND CONVEX ORDERS 149 

Then use (2.22) and (2.23) to see that v[x, co) < A*[x, co) is equivalent to 

,,[~, co) < ,,[~s-1, co)(-~-, - ~s)/(* - cs) 

and to establish this last inequality. 

Next, we show that (2.21)(ii) holds. Let # be any p.m. on R with f0 °° zdI~ < co 

and v -~s/~*. We show that A* -4, ~t*. First, observe that A*[z, co) _< ~t*[x, co) = 

1 for * <_ f y d #  (where yo <_ fydl~ since v -% p*), and A*[x, co) = v[z, co) < 

/~*[z, co) for y,, < x. One shows that A*[x, co) _< #*[x, co) for y0 < x < y ,  by 

proceeding from z = f yd~ to x = y ,  as follows. For f yd~ < z <_ Xl, 

(2.24) ~.~*[~,co)-  ~o ~ , .x* [~ , ,co) -  ~o _ x , , , l x , , c o ) - , o  
v~*lx, o 0 ) - - I - - ~  Cl = ) ~ * [ X l , O 0 ) - - I  - -  /][~gl,OO)--X 

> x , # * [ * i , c o ) - ~ o  > ~ , * [ ~ , c o ) - x o  
- V * [ x , , c o ) - I  - /~ * [x ,  c o ) - I  ' 

where the equalities follow from (2.22) and direct calculation; the first inequality 

follows from v -<, #* and the function (x,p - x0)/(p - 1) being decreasing in p 

on [0,1]; and the second inequality follows from the function 

( ~ ' [ ~ ,  co) - ~0)/(~'[~,  co) - 1) 

being increasing in x (for example, use a change of variable u = H~,(x) and 

u0 = H~, (x0), the representation 

(.l ,*[x, oo) - x0)/(v*[*, co) - l)  = (u - , , 0 )  -~ fF-'(t)dt 
li0 

and calculus). It is immediate from (2.24) that ,~*[x, co) _< #*[x, oo) for x0 < 

X < X  1 . 

Now suppose we know that ,~*[x, co) < #*[z, co) for x <_ xj-1; we show that 

~'[x, co) < z*[x, co) for x~-i  < • < x~ in two cases. Let p = " ( - c o , : j - i ) ,  and 

observe that :S-1 < H;I(P)  ( f r o m .  -~, /~*). First, if ( f y a . )  v ~_~ < • < 

H~ -1 (p), then 

.~*[X, 0~) _~< .~*[Xj--1, (X)) : V[Xj--1, OO ) ~- 1 - p  = # * [ H ; l ( p ) ,  oo) __~ #*[x,  oo). 
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Second, suppose that  (f yd9) V H~'I(p) < x < xj; we have that  

(2.25) ~(A*[x' oo)(1 - p)-l) _ xj_1 xi(v[~i, oo)(i - p)-1) - ~j_, 

> ~A~'[~j,c~)(I - p)-~) - ~i-1 

- O,*[~j, co)(1 - p ) - l ) _  1 

> ~(~*[~, co)(1 - p ) - ' )  - x~- i  

- (~*[z, o o ) ( 1 - p ) - l ) - I  ' 

where the reasoning is analogous to tha t  used in verifying (2.24) with the excep- 

t ion of the last inequality. The last inequality of (2.25) uses tha t  the function 

g(x) := (x(/l* Ix, co)(1 - p ) - l )  _ xj-1 )/((/~* Ix, oo)(1 - p ) - i )  _ 1) 

= (v - ,,)-' '(t)dt - ~-1(1 - v) 

is decreasing in x (here u = H~,(x)). This follows by observing that dg/du > 0 if 

and only if 

(2.26) 
1 

s(~) := fFzl( t )dt  + Fzx(~)(u - p) _> Xj_l(1 - p )  

for p < u < 1. But s(u) is increasing for p < u < 1, and so 

~(,,) >_ ~(p) = (i -p)H; l(p) > x#-i (I -p), 

and (2.26) is verified. From (2.25), it easily follows that A*[z, co) < p*[x, co) for 

I'/~1 (p) __< X < :Z:j. This completes the proof. | 

Examples 2.9: The following examples show that for discrete p.m.'s v with 

finitely many atoms, (a) the number of atoms of the associated minimal p.m.'s 

v~ ~ e s ;  and (b) in general, v # ( ~ ) * .  

(i) For p.m. v = (1/3)eo + (1/3)~, + (1/3)e~_, we have v~ = (1/3)e-2 + (1/3)eo + 

(1/3)e2; and (vA)*[x, co) = 1 if x < 0 , =  2(x + 2) -1 if 0 < z < 1 ,=  2(3x) -1 if 

1 < x < 2 , =  1/3 if z = 2, and = 0 if 2 < z. 

(ii) For p.m. v = (1/3)~0 +(1 /9 )e l  +(5/9)~2, we have va = (4/9)e-5/2 +(5/9)~2; 

and (vA)*[z, oo) = 1 i f z  < 0 , =  5(2x + 5 ) - '  i f 0  < z < 2 , =  5/9 i f x  = 2, and 

= 0 i f 2 < x .  | 
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Remark  2.10: We have given a characterization of the set 79~ of maximal p.m.'s 

in Lemma 2.6 and of the set 79* of p.m.'s dominated above by maximal p.m.'s 

(in -~s order) in Proposition 2.1. The analogous set of minimal p.m.'s and set of 

p.m.'s dominated below by minimal p.m.'s (in -~ order) are equal to E+; that is, 

(2.27) C+ = {# E E+ : there is a p.m. v E 79* with va <~ #} 

= { # E E + :  there i s a p . m ,  v E 7 9 * w i t h v z x = # } .  

This follows immediately from Lemma 2.5(a). | 

3. M i n i m a l  p .m. ' s ,  M a x i m a l  p .m. ' s ,  and  a La t t i ce  Isomorphism 

In this section, mappings • and A are introduced to clarify the connection be- 

tween minimal p.m.'s and maximal p.m.'s. Recall that £+ is the set of minimal 

p.m.'s (see Remark 2.10), and that 795 is the set of maximal p.m.'s (see (2.2)). 

Define the mappings * : ~+ ~ 79~ and A : 79* --, ~+ by *(#) = #* and A(v) = w,. 

We show in Theorem 3.1 that  * is a lattice isomorphism between (~+, "~c) and 

(79~,-'<s), where E+ has lattice operations Vc and Ac of (1.4) and appropriate 

lattice operations on 795 are defined immediately before Theorem 3.1. 

First, observe that mapping * is a bijection between E+ and 79~, with inverse 

mapping given by the restriction of A to 79~. Indeed, use Lemma 1.8 and (2.7) to 

see that  * is one-to-one and maps ~+ onto 79~; and use Lemma 2.5(a) to obtain 

that the inverse of * is the mapping A restricted to 795. In particular, for each 

maximal p.m. v, there is only one # E E+ for which *(#) = v. However, for each 

minimal p.m. # E E+, there are many p.m.'s v E 79* for which A(v) = #. For 

example, let # = (1 - p ) e a  +pea, where a < b and 0 < p < 1 and denote 

zo=/zd~=(1 - p ) a + p b .  

We claim that 

(~ e 79(R):~a = ~} = 

{v E 79(R) :z0 = inf{z : v ( -oo ,  z I > 0}, v[b, oo) = v{b} = p 

and v[~, ~ )  _< p(b - a) / (~ - a)for  ~0 _< • _< b). 

To see that  this holds, observe that for the given #,#*[x, oo) = 1 if x < x0,= 

p(b - a ) / ( z  - a) if z0 < z _< b, and = 0 if b < z; and use the defining properties 
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of va (see, e.g., Theorem 2.4). Thus, a restriction of A to 7~ was necessary for 

description of the inverse of , .  

A lattice structure on 7)~ is identified through the following operations. The 

operations A, and V, are defined for pairs of p.m.'s al and a2 in "P~ by 

0"1 ^ ,  0"2 := ((0", ^° 0"2),,)" and m v ,  0"~ := ((0", v .  ~,2)~)'.  

Here are some easily verified observations related to this definition: (i) 0.1Aoa2 ~s 

al  A, a2 and 0.1 Ms 0"2 ~s 0"1 V, 0"2; (ii) 0"1 A, 0"~ and al  V, 0"2 axe in T~; and (iii) 

if al = / ~  and a2 = / ~  for/~1 and/~z in ~+, then 

V * 0.1 A, a2 = / ~  A , / ~  = (/~1 A¢/~2)* and al V, 0"2 = / ~  V , / ~  = (/~1 ~/~2) • 

It is easy to see that (P~, -%) is a lattice under the operations A, and V,. 

TItEOREM 3.1: The map * : (E+,'-<c, Ac,Vc) ~ ( ~ , ~ ° , A . , V * )  is a lattice iso- 

morpb_/sm. The inverse of* is the map restricted to 79~. 

Proof." It remains only to prove the lattice preserving property, that  is, 

(~1 A~ #2)" -----/~ A, #.~ and (#I Vc P2)* -- #~ V,/~. 

But this is a straightforward consequence of Lemma 1.8 and the definitions of 

the * and A operations. | 

As a consequence of Theorem 3.1, we have the following characterization of 

operations Vc and hc in terms of minimal p.m.'s and maximal p.m.'s: for gl and 

/~2 in E+, 

(3.1) /zl Ac #2 = A(~u; As #~) and #1 Vc/~2 = A(#; Vs #~). 

The following example shows that "P~ is not a lattice under the operations Vo 

and Ao of Section 1. 

Example 3.2: We exhibit p.m. 's/zl  and/~2 in E+ (so/J~ and g~ are in ~off) for 

which 

~t ~ It S 

Let w be a uniform distributed r.v. on [0,1], and define 

f2 if~(1,1] 
~'  = F f l ( w )  = ~ - 4  if w • [0, ~] 
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and 

Then 

and 

and 

{4_ 21 v ifw e ( i ,  ], 
g2 = F : - l (w)  = 2 i fw  e [0,]] .  

. v H~4(w) = {2  ifw E (3,11 
#1=  4 w / ( 1 - w )  if w• [0 ,3 ]  

. v H~i(w) = {4 ifw E (~,11 
#2= 2 w / ( 1 - w )  i fw• [0 ,~ ]  

#~ Vs #,~ = ( H i  -1 V H2 -1)(w)  = 

Next, denote p.m. p on R by 

4 
2w/(1 - w) 
2 
4w/(1 - w) 

i f w  e (~ , l l  

ifw E (½,]1 
ifw E (3, ½ ] 

0 1 if w E ( , ~]. 

2 1 4 i fw E(~ ,  ] 
~) 1 2 p = M =  2 ifw E (~,~] 

0 ifw E [0,31. 

Then 

and 

4 ifw E (2 1] ~-, 
V F _ l ( w ) =  0 if wE(1  2 p~  : ~, ~] 

- 4  if  ~ E [o, 3] 

4 

(pa). ___v H_l(w) = (4/3)/(1 - w) 
4w/(1 - w) 

2 1 ifw E (~, ] 
ifw e (~,]1 

0 1 if w E [ , ~]. 

It follows that 

153 

(3.2) p ~, #; v, ~,G ~, (pA)* = ((~,~ v, I,G)A)* = . ;  v, ~,G. 

In particular, (3.2) indicates that ~q' V~ ~,G ¢ ~. (From Lemma 1.8, we have also 

that p~ = (~,; v, ~,G)A.) 
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4. S o m e  P r o p e r t i e s  o f  M i n i m a l  P r o b a b i l i t y  M e a s u r e s  

In this section, we prove several important  properties relating probability mea- 

sures and their minimal probability measures. These properties will be used in 

Section 5. 

PROPOSITION 4.1: For each v 6 "P*, the minimal p.m. vzx satisfies VA -.<o v. 

Proof: Denote the distribution functions of w, and v by F a  and F respectively. 

Suppose there is u0 6 (0,1) with F-*(uo) < F[~l(uo). We obtain a contradiction 

to the minimality of vzx (i.e., va  = g.l.b..<,E+(v)). Define 

u2 := inf{u > u0:  F[x1(u) <_ F - l ( u ) }  

if this set ~ 0, and = 1 otherwise. By the left continuity of the left-inverses, we 

may assume uo < ~2; we have F-a(u)  < FiX(u) f o r .  e (~0,~2). Next define 

{ / / } ul := sup t < u2:  F[xl(u)du < F-l(u)du 
t t 

if this set = 0, and = 1 otherwise. Then ul < u0 < u2; 

~2 U2 

/ for 
1 , J  

t t 

and if ul > 0, then 

~2 U2 

f Fxa(u)du=fF-~(u)du and 
u l  u l  

(use for all e > 0 sufficiently small, 

112 

f (F[x~(u)- F-l(u))du >_ 0 and 

Define ~ - 1  on [0,1] by 

{ F21(u) 
P - l ( u )  = F-l (u)  

F21(u) 

F~x*(u1+ ) < F-*(u,+) 

112 

f ( r~ l (u )  - r - l ( u ) ) d u  _< 0). 
141 --C 

i f 0 < u < u l  

if ux < u < us 

if u2 < u < 1 
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(if u2 = 1, define P - l ( u )  = F - l ( u )  for ul < u _< 1; and if ul = 0, define 

~' - l (u )  = r - l ( u )  for 0 < u < u2). Let ~ be the associated p.m. and _~ be its 

distribution function; then i ~-1 is the associated left inverse of F.  We claim that  

(4.1) f iEE+(v) ,  fi-~cvA, and f i # v a .  

This will give the desired contradiction to the minimaiity of va. To see that 

~' E £+(v), first observe that ~ E $+ since w, E $+, and that v -<, (P)* will follow 

if we show F -~ < H-~.  But this is immediate from F -1 < HZ 1 (v -<, (va)*) 

and 

[H2(t) ., 

= / 
I H2'(t) 

"Jr(1 - ~ 2 ) H ~ 1 ( ~ 2 ) }  

ifO < t  < u l ,  

if ul < t < u2, 

if u2 < t <  1. 

Next, P "~c vA follows from Lemma 1.8 once it is shown t h a t / ~ - 1  < H~l .  But 

this is immediate for t < ul and for t >_ u2, and for ui < t < u2 it follows from 

{'/ } f c - x ( O  = (1 - t ) -~ F - ~ ( . ) d =  + (1 - = ~ ) H ~ ( ~ )  

t 

<_ (1 - t )-~ F21(,~)e,~ + (1 - ,~ )H;~(u~)  = H2~(O.  

Finally 9 # v/,, since for u E (u0,u2), ~' - l (u )  = F - l ( u )  < F~l (u) .  This gives 

that (4.1) holds. 1 

The following lemma is useful for establishing properties satisfied by minimal 

p.m.'s, as in the proof of Theorem 4.5. Recall from Section 2 that  '=~' denotes 

weak convergence. 

LEMMA 4.2: (a) Let v E P* and let {v,,},,eN be a sequence ofp .m. 's  on R wh/ch 

increases to v in the -<, order. Then the sequence {((v.)z~)*} is increas/ng in 

the -.<, order; ((vn)a)* =*- (va)*;(va)* = Vs{((Vn)a)* : n 6 N}; and vA = 

v o { ( ~ . ) ~  : n e N}.  

(b) Let vl 6 "P* and {v,,},eN be a sequence of  p.m. 's on R which decreases top.re. 

v in the -<, order. Then the sequence {((v,)a)*} is decreasing in the -<o order; 

((~.)~)* ~ 0,A)*; ( ~ ) *  = A , { ( ( ~ . ) ~ ) *  : n e N};  and ~,,, = A o { 0 , . ) , ,  : n • N}.  
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Proof: We prove part (a); the proof of part (b) is analogous. 

satisfying v -G p~. We are given 

(4.2) 

Vn"~,z/nJrl'~sV f o r a l l n E N ,  and limv'`[x, oo)=z/[z, oo) 

Let p0 E £+ 

for all z E R. 

From Theorem 2.4, one obtains the sequence {(v'`)A} of p.m.'s in £+ and uses 

their properties to show that ((vl)A)* ~ ,  ((z/'`)A)* -% #~ for all n E N and that 

the sequence {((z/'`),x)*} is increasing in the -% order. Then apply Lemma 2.3(5) 

to obtain a unique p.m. g E £+ satisfying ((z/'`)A) ° =~ p* and #* = V,{((z/,),~)* : 

n E N}. Now apply Theorem 2.4 once again to obtain the p.m. z/t, in £+. Since 

z/'` -% z/-% (z/A)*, it follows that ((z/'`)/,)* -% (z/a)*, for all n E N; and hence 

p* -% (va)*. Also, v'` -% ((z/,)a)* -G ]~* for all n E N, and v ~ ,  #* follows from 

(4.2); and hence (z/a)* -% ~*. Thus p = va. The remainder of the conclusion 

follows from Lemma 1.8. II 

In general, additional care is needed in combining convergence of p.m.'s {/~,} 

in -G-order with convergence of means {f  zdpn}'`>l. For this purpose, first recall 

from ([3]: page 92 and [4]: page 89) that {P'`}neN is uniformly integrable from 

below if 

lim sup [ -zdp'`  = O. 
A ¢¢ "̀  Jz<-A 

We state convergence results for means in the following lemma and then apply 

them in Theorem 4.5. 

LEMMA 4.3: Let {#n}neN be any sequence of p.m.'s in E+ satisfying y -% p* -% 

p~ for a/l n 6 N, for some v 6 7a(R) and po 6 ~+. Then 

(a) g {/~,} is decreasing in the -% order and I~ is the p.m. of Lemma 2.3(a), 

then f 1 f xd , as n --, in  and 

(b) if {p~} is increasing in the -% order and p is the p.m. of Lemma 2.3(b), 

then tim,, T f zdp'` < f xd#. If, in addition, {p,}  is unfform/y integrable 

from below, then f xdp'` T f zdp as n --* ~ .  

Proof: Under the assumptions of part (a), first observe that { f x d p , }  is a 
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nonincreasing sequence in [-oo, oo), since 

(4.3) 

1 1 

f .dp. = f F~1(u)du---l~ f F~1(u)du = lim(l-t,o t)H;-"i(t) 
o t 

I 

>~m(l-t)H:i+,(t)= f F:i+,(u)du= f 
o 

We may interchange limits as follows to obtain 

1 

li.m/zdl~"=lim/F~"1(u)du=limlimH~1"(t), t,o 
o 

1 

=lim]imH~l(t)=hmH:'(t)=/F~'(u)du=/xdp't~o . tlo 

Under the assumptions of part (b), one has that {f  xdl~,,} is a nondecreasing 

sequence in [-oo, c¢) (argue analgous to (4.3)). Also, for every t e (0,1), we 

have 
1 

o 

and thus 

(4.4) 
1 

o 

If, in addition, {p,,} is uniformly integrable from Below, and {p,,,} is a subse- 

quence of {p,} for which p, ,  =} p (as in the proof of Lemma 2.2), then Fatou's 

Lenuna can be applied (e.g., in the form given in [3]: page 94) to give 

(4.5) 
1 1 1 

0 0 0 

and equaiity follows from (4.4) and (4.5). m 
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The following example illustrates that one must add some additional hypothesis 

to those of part  (b) of Lemma 4.3, such as uniform integrability of {/S,,) from 

below, in order to obtain convergence of { f  xd#n} to f zd#. 

Example 4.4: For n E N, let #,, = n-1¢_,,  + (1 - n-1)¢0; and let #0 = ¢0 and 

i, = ¢-1. Then for n E N,/in and #* have respective left-inverse functions F~ -t 

and H~ -1 given by F [ l ( u )  = - n  if 0 < u < n -1, and = 0 if n -1 < u <_ 1; and 

Hg i ( t )  = ( - n ) ( n  -1 - t ) /(1 - t) if 0 < t < n -1, and = 0 if n -1 < t < 1. The 

assumptions under part (b) of Lemma 4.3 are satisfied, and/S = eo. However, 

lira, f z d # ,  = - 1  < 0 = f zd#. 

TREOREM 4.5: For each v E ~*, 

(4.6) m i n [  zd# = [ zdvl, = inf{z : v ( - c o ,  z I > 0}, 
J J 

and this number is Jn [ -co ,  co). 

Proof: Let v E ~*, so that there is a p.m. /So E E+ with v -4~/S~. The first 

equality in (4.6) is clear, e.g., from (2.14)(i). We divide the proof of the second 

equality into three steps. 

STEP 1: Assume v is a discrete p.m. having finitely many atoms x0 < . . .  < 

z,,. Use Proposition 2.8, and, in particular, (2.19) and (2.23), to obtain that  

f xdva = xo from direct computation. 

STEV 2: Let z0 = inf{z : v ( - c o ,  z] > 0} and assume z0 is finite with v{zo} > 0. 

Let D be some dense subset of [x0, co) containing the atoms of v. Choose a 

scheme x,,,i E D, i = 0 , . . . ,  n, n E N, of real numbers with x,,,0 = x0 < x,,,1 < 

. . .  < x,,,,, and Dn := {xn,i : i = 0 , . . . ,  n} increasing under containment to D as 

n --+ co. Define discrete p.m.'s v,, ,n e N, by y,,[x, co) = 1 if x < x,,,o = xo,= 

u[x,,,i, co) if x,,,i-1 < z < z,,,i, for i = 1 , . . . ,  n, and = 0 if x,,,,, < x. The v , ' s  are 

well-defined arid satisfy by construction that {v,,} increases to v in the -4~ order. 

Thus v,, e 7 ~* for each n e N. From Lemma 4.2, we have (((v,,)a)*} increases 

in the -<s order and irA) * = Vs{((t'n)A)* : n • N}. Also, f xd (v , , )A  = Zo for 

all n • 1~ from Step 1; and {(v,)z,} is uniformly integrable from below. In fact, 

Proposition 2.8 gives that the support of (vn)a is contained in [a, co) for all 

n • N where 

inf < := co) c o ) -  1) 
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_< inf ( y v , [ y , ~ )  -x0)/(~,[v, o o ) -  1). 
y>z0 

From Lemma 4.3(b), it follows that limn f zd(vn)A = f xdvA, and so f xdvA = 

X 0 . 

STEP 3: For any v e 1 °*, let z0 := inf{z : v(-oo,  z] > 0} and assume v{x0} = 0. 

In this case, x0 might be -co .  Let {5,,}hen be a sequence of numbers decreasing 

to z0, and define p.m.'s vn ,n  • N, by 

~"(.) = ~(. n [~n, ~ ) )  + ~(-o~, ~,)~o(.) .  

Then v n • 1 O* and {v n} decreases to v in the -% order. From Lemma 4.2, we 

have {((un)a) * } decreases in the ~. order and 

(ixA )" = As{((vn)zi)* : n • N}. 

Also, f zd(v")a  = 6,, for each n • l~l from Step 2. From Lemma 4.3(a), it follows 

that  limn f xd(vn)a = f z&a, and so f zdva = z o  = inf{z : v( -oo ,  x] > 0}. 

l 

5. Martingale Representations and Inequalities 

In this section, we give several characterizations of collections of martingales 

arid martingale inequalities which use minimal p.m.'s. In particular, sharp, 

expectation-based martingale inequalities are given in Theorem 5.3. In Remark 

5.4 the inequalities in Theorem 5.3 are given a natural interpretation as a new 

class of 'prophet inequalities' in optimal stopping theory. 

In this section we use the following definition of an (integrable) martingale. 

X = (Xt)0<t<l is a mar t i nga l e  if there is some probability space (fl, jr, p )  and 

a filtration {-%t}0<t<x on (fl,~-, P) under which (i) (Xt)0<t<l is {9vt}-adapted; 

(ii) ElXtl  < co for every 0 _< t _< 1; (iii) E(XtlY' , )  = X, a.e. [P] for every 

0 < s < t < 1; and (iv) the paths t ~-+ Xt  are right continuous and have left-hand 

limits in R for 0 < t < 1 (RCCL). 

We recall the following results for martingales X = (Xt)0<t<l which relate 

the terminal r.v. X1 and the supremum r.v. M = M ( X )  = suP0<t<i Xt ([8]: 

Theorems 2.1 and 3.1). 

Let p be any p.m. on R with f xdl~(x ) finite. Then 

{v E ~o(R) : there is a martingale (Xt)o<t<l_ _ satisfying M =v u and X~ =v p} 

(5.1) = {~ e ~ (R):  ~ ~ ,  ~ ~s v*}. 
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Let H be any p.m. on R with f xdH(z) = Zo • R. Then 

(5.2) {v • W(R): there is a martingale (Xt)0_</<l satisfying 

Xo = x o , M  ~ = v andXl  = H} = {~ • ~ ( [ ~ 0 , o o ) ) :  H -~, ~ -~, H'}. 

We establish 'converses' of these results with use of maximal p.m.'s and minimal 

p.m.'s. 

THEOREM 5.1: Let v be any p.m. in 7 9.. Then 

{H • P ( R ) :  there is a martingMe(Xt)o<_t<l satisfying M ~= v a n d X 1  ~ H} 

(5.3) = {H • C: H -~s ~ -~, ~,'} = {H • E:  va -~c H "~, ~}. 

If, a/so, z0 := inf{z : v ( - c¢ ,  z I > 0} is tlnite, then 

('5.4) {/J E ~ ( R ) :  there is a martingale (Xt)o_<ts, satisfying 

X0 = x0 ,M ~ r a n d  X1 ~ H} 

= {tz • E : v/, -.<~ H % v}. 

Proof.." We prove (5.4); the proof of (5.3) is analogous. Let v • 79* with finite 

z0 = inf{z : v ( - eo ,  z] > 0}. First, assume that/~ is a p.m. on R with f zdH = xo, 

and there is a martingale X = (Xt)0<t<l_ _ satisfying Xo =- x o , M ( X )  =z~ v, and 

=/a.  It follows from (5.2) that 

H ~ ,  U "% la* and f zd  H = zo. (5.5) 

From Theorems 2.4 and 4.5, we have that (vt,)* -% H* and f xdua = Xo = f zdl~. 

It follows from (1.5) and (5.5) that 

v~ "<k /J "% v and f xdl~ = Zo. (5.6) 

Thus, we have established containment in one direction for (5.4). 

Now, if/~ is a p.m. on R satisfying (5.6), then, from (1.5) and Theorems 

2.4 and 4.5, we have v -% (utx)* -% H °, and thus H satisfies (5.5). But  since 

/~ is a p.m. on R satisfying (5.5), one then has, from (5.2), that there is a 

martingale X = (Xt)0<t<l_ _ satisfying Xo =- xo, M ( X )  =z~ u and X1 =~ H. This 

proves containment in the other direction for (5.4). II 
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Observe that  vA might not be in the set of p.m.'s in (5.3). Indeed, if v E P* 

with z0 := inf{z : v(-oo,  z] > 0}, and z0 = -oo ,  then f zduA = - o o  (from 

Theorem 4.5), so vA ~ ~ and v,x is not in the set in (5.3). On the other hand, x0 

is assumed to be finite in the second conclusion of Theorem 5.1, and va is in the 

set of p.m.'s in (5.4). This leads to the following sharp results for (integrable) 

martingales in the setting of (5.4). 

Using properties and characterizations of the Hardy and Littlewood maximal 

p.m., Dubins and Gilat [6] have shown that for any p.m. p on R with fzd~ = xo, 

the maximal p.m. p* satisfies #* q A4(/~;x0) and/~* = 1.u.b. A4(/~;x0) in the 

-4j order, where 

.M(p; x0) := {v E P ( R ) :  there is a martingale (Xt)0<,<l 

with X0 = x0 ,M v 9 = v, and X1 =/~}. 

We have an analogous characterization result for minimal p.m.'s as a consequence 

of Theorem 5.1. 

COROLLARY 5.2: Let v E P* with finite z0 = inf{z : v(-oo,  z] > 0}, and let 

vz~ be the minimal p.m. associated with v. Then va 6 A/(v; x0) and v~ = 

g.l.b. A/'(v; x0) in the "~k order, where 

x0) := {# :there is a martingale (X,)0_<,_<, 

with Xo =- xo, M v= v, and X1 v= #}. 

Proof." We have that v,~ E Af(v; x0) from Theorems 2.4 and 4.5, Proposition 4.1 

and (5.4). To see that vA = g.l.b. A/(v; x0) in the "<k order, first observe that 

vz~ -<~,/~ for every/~ 6 Af(v; x0) from (5.4); and if p is any p.m. in £ satisfying 

p -~k/.t for every ~t E Af(v; x0), then p "<k vA, since vz~ E Af(v; x0). I 

The following martingale inequality form of Corollary 5.2 is a consequence of 

the definition of the -<k order. 

THEOREM 5.3" Let v E T'* with finite z0 = inf{z : v(-oo,  z] > 0}, and let v~ 

be the minimal p.m. associated with v. Then for every martingale (Xt)o<t<_l 

satisfying Xo Xo, SUPo<_t_<l Xt v = = v, and with terminal r.v. X1, it follows that 

/ CdvA < E(¢(X1)) for each convex function ¢ on R, (5.7) 

provided both integrals exist. Within this collection of maxtingales, there is one 

with X1 v_ vA, and thus the inequalities in (5.7) axe attained simultaneously. 
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Remark 5.4: The result in Theorem 5.3 has the following 'gambler vs. prophet'  

interpretation. Consider the collection of martingale games X = (Xt)0<t<l start- 

ing at X0 -= x0. Among these games, consider the subcollection of martingale 

games for which M = M(X)  = sup0<t<x Xt has distribution u in ~*. For 

each martingale game (Xt)0<t_<l within this subcollection, and any nondecreas- 

ing convex utility function ¢, players of this game attempt to maximize their re- 

ward E(¢(X~))  through a well chosen stopping time r.  A 'prophet'  playing this 

game, with anticipatory stop rules allowed, obtains reward E(~(M)) = f tdv; 

and a 'gambler' playing this game, with only nonanticipatory stop rules allowed, 

obtains reward E(C(X1)). Theorem 5.3 states that within this subcollection of 

games, the gambler does worst under the martingale game (Xt)o<t<_l having dis- 

tribution ua for the terminal r.v. X1, and in this game the gambler obtains 

reward E(¢(X, ) )  = f Cduzx. (Compare to Section 4 of [81; see also [2].) 

If v E :P* with x0 = inf{z : u(-oo, z] > 0} finite, then ua is in the set 

of p.m.'s of (5.4), and so there exists a martingale (Yt)0<t_<a satisfying Y0 = 

x0,sup0<t<a Y~ ~ u, and II1 ~ vA. For this martingale, the inequality of (5.7) 

is attained for all convex functions ¢ on R. From Lemma 1.4 of [8], it may be 

assumed that the paths of (Yt)0<t_<x have the following property: for each w E g~, 

there is some b(w) E (0,1] for which Yt(w) is nondecreasing for t in [0, b(w)), and 

s u p  = > = = for  a l l .  e 1]. 
0<t<l 

We give examples of such martingales for the examples of Section 2. 

Example 5.5: (Continuation of Lemmas 2.5 and 2.6 and Examples 2.7). Let 

u E "P~, a maximal p.m., as in (2.7) and Lemma 2.6, with left inverse F~ -1 defined 

on probability space ([0, I],B([0, 1]), m). Assume x0 := inf(z : u(-cx~, z] > 0} 

is finite. The associated minimal p.m. ua is then in g, with f x d u a  = xo, 

and its left inverse F~-2 is given by (2.16). Define the filtration {~',} by 9vt = 

a{B([O,t]),(t, 1]} for 0 < t < 1 and 3% = {¢,[0,1]}. Then the stochastic pro- 

eess (Yt)0_<t_<x defined by Yt = E(F;-2 IJrt) is a martihgale with respect to {-ft} 

satisfying Yo =- f xdua = zo and Y1 = F~'a a. From Lemma 2.5 and the remarks 

thereafter, it is clear that (Yt)o<t<_l has representation 

(5.8) Yt(w)=Fy~X(w) i f 0 < w < t < l ,  and =F~-a( t )  i f 0 _ < t < w < l  

for 0 < w < 1, and that sup0<t_< x Yt = F~ -x. This martingale (Yt)0<t<a attains 

the inequality (5.7) simultaneously for all convex functions ~b on R (provided 
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f CdvA exists). For example, if v is exponentially distributed with parameter 

one, vA is given in Example 2.7(i), and the martingale (Yt)0<t<l of (5.8) is given 

by 

Yt(w) = - 1 - 1 o g ( 1 -  w) i f0  < w < t < I, and = - l o g ( l -  t ) i f0  < t < w < 1. 

In this case, examples of inequality (5.7), with ¢(z) = Ix + 11 p with p > 1 and 

¢(x) = e ~(z+l) with A < 1, are 

E(]Y~ + llV ) = F(p + 1) _< E(IX1 + l[V), and 

E(e xY1) = (1 - )0 - i e  -~ < E(e ~x') 

for all martingales (Xt)o<_t<_l with X0 = 0 having sup0_<t_<l Xt exponentially 

distributed with parameter one. 

Example 5.6: Continuation of Lemma 2.8 and Examples 2.9. For v = (1/3)eo + 

(1/3)~1 + (1/3)e2, define random vector (X0, X1, X2) by (X0, X1, X2) = (0,1, 2), 

(0,1, 0) and (0, -2 ,  - 2 )  with probability 1/3 each; and for u = (1/3)e0 +(1/9)el  + 

(5/9)e2, define random vector (X0, X, ,  X2) by (X0, X1, X2) = (0, 2, 2), (0, 1, 2) 

and (0,1, - 5 / 2 )  and (0, -5 /2 ,  - 5 / 2 )  with respective probabilities 1/6, 7/18,1/9, 

and 1/3. Define processes (Yt)0<l_<~ by Yt = Xo if 0 < t < 1/3, = X1 if 1/3 < 

t < 2/3, and = X2 if 2/3 < t < 1, and define filtrations (~'t)o<t<l by ~'t = {¢, ~} 

if 0 < t < 1 /3 ,=  a(X0) if 1/3 < t < 2/3, and = (r(Xo,X~) if 2/3 < t < 1. 

Then each process (Yt)0_<t<l is a martingale with respect to the respective (.~'t), 

satisfying Y0 = 0, sup0_<t_<l Yt v v = v, and Y1 = va, where p.m.'s v~, were given in 

Examples 2.9. For the first p.m. v, the martingale (Yt)o<_t<_l is analogous to that 

of (5.8); but for the second p.m., the analogy breaks down. 
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